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What it is about

Two blocks in title
1 Polygonal metamaterials
2 Elliptic corner problems

Very short explanation.
1 Polygonal Metamaterials:

Problems of type P = − div A grad with sign-changing coefficient A.
A piecewise smooth in polygonal subdomains.

2 Elliptic corner problems: the “Standard Model” [SM] consists in:
Fredholm theorems in corner domains of various types (conical, edge,
polyhedra,...) based on a hierarchy of elliptic symbols (interior, boundary,
corner Mellin, edges,...)

Difficulty to match 1 and 2 :
The metamaterial problem P is not coercive, not semi-bounded.
P is a transmission problem and its ellipticity properties are not obvious.
In contrast with coercive problems, it may happen that P is not Fredholm
at the variational level.
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Standard model of statement

Let Q be an operator associated with a boundary value problem of order 2 in
a polyhedral domain Ω in R3 (or R2 – polygonal domain).

In a very general imprecise form, one of the main statements takes the form

Theorem 0

The operator Q is Fredholm if and only if it is elliptic.

This makes sense if we define
1 The pair of functional spaces between which Q is Fredholm: Typically,

these pairs involve pairs of Sobolev spaces
(
Hs+2(Ω) , Hs(Ω)

)
, or a

huge variety of weighted spaces...
2 The ellipticity is a property that has to be satisfied at each point of Ω. It

takes different forms
Inside the domain (classical)
On a regular point of the boundary
Inside an edge
At a corner

The theory of singularities addresses the default of invertibility or
Fredholmness.
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Standard div A grad operators

Let Ω be a (polygonal or polyhedral) domain. Let

x 7−→ A(x)

be a real L∞(Ω) function given on Ω.
We can define the operator P ≡ − div A grad in variational form:

P : H1(Ω) −→
(
H1(Ω)

)′
u 7−→

(
v 3 H1(Ω) 7→

∫
Ω

A(x)∇u(x) · ∇v(x) dx
)

In usual applications A is positive on Ω, smooth, or piecewise smooth in a
polygonal or polyhedral partition (Ωi ) of Ω (transmission problem). In this
case, the bilinear form

A(u, v) :=

∫
Ω

A(x)∇u(x) · ∇v(x) dx

is coercive on H1(Ω):

A(u, u) ≥ β|u|
2

H1(Ω)
, with β > 0

hence P + I is invertible, and P is Fredholm of index 0.
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Sign-changing operators

When “metamaterials” are involved, A is piecewise smooth, never 0, but will
take the positive or the negative sign in different subdomains.
Then we do not have coercivity any more.
A formalism equivalent to the stability of P was introduced, see e.g.

A.-S. BONNET-BEN DHIA, L. CHESNEL, P. CIARLET, JR

T-coercivity for scalar interface problems between dielectrics and metamaterials,
ESAIM Math. Model. Numer. Anal. 46 (2012) no. 6, 1363-1387.

T-coercivity is the existence of a bounded operator T : H1(Ω)→ H1(Ω) such
that

A(u,Tu) ≥ β|u|
2

H1(Ω)
, with β > 0.

The construction of T has to be done for each separate case. It is done for
2d corners in the above reference, generalizing the right-corner case done in

S. NICAISE, J. VENEL

A posteriori error estimates for a finite element approximation of transmission
problems with sign changing coefficients,
J. Comput. Appl. Math, 235 (2011) no. 1, 4272-4282.
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Our typical example of polygonal metamaterial

We consider the operator P ≡ − div A grad on Ω as above, where:

Ω is smooth (for simplicity), and is the disjoint union of two polygonal
subdomains Ωa and Ωb:

Ω = Ωa ∪ Ωb and Ωa ∩ Ωb = ∅

Assume for simplicity Ωb b Ω. Then the interface Γ coincides with ∂Ωb.

A is smooth and positive in Ωa, smooth and negative in Ωb:

A(x) =

{
a(x) if x ∈ Ωa, a ∈ C∞(Ωa) and a > 0 in Ωa ∪ ∂Ω

b(x) if x ∈ Ωb, b ∈ C∞(Ωb) and b < 0 in Ωb

By Ωa / Ωb polygonal, we mean that at any point x of its boundary, it is locally
smoothly diffeomorphic either

1 to a half-plane R× R+ (x a smooth boundary/interface point)
2 to a sector K (K plane sector in R2, 6= half-plane; x is a corner)

Examples for Ωb : curvilinear triangles, quadrilaterals... b in a disk Ω, and its
complementary in Ω for Ωa.
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Systems of order 2

We are going to give elements of proof for

Theorem 1

Let L be given by a N × N system of PDE operators of order 2 with smooth
coefficients on a compact manifold Ω without boundary (of dim. d). Then

L is Fredholm if and only if L is elliptic

Meaning of terms in the statement:
1 Fredholm from H2(Ω) := H2(Ω)N into L2(Ω) := L2(Ω)N

2 L = (Lij (x ,−i∂x ))1≤i,j≤N , Lij smooth in x , polynomial of deg. 2 in −i∂x .

principal parts Lpr
ij defined by removing the terms of order 1 or 0.

(principal) symbol σ defined as

σ(x , ξ) =
(
Lpr

ij (x , ξ)
)

1≤i,j≤N

ellipticity: ∀x ∈ Ω, ∀ξ ∈ Sd−1, σ(x , ξ) invertible N × N matrix.

Example of scalar Laplacian: L = −∆, σ(x , ξ) = |ξ|2.
11/41



Standard Model Polygonal Metamaterial Interior ellipticity Interface ellipticity Corner ellipticity Singularities Conclusions

Elliptic =⇒ Fredholm

Choose x0 ∈ Ω. By ellipticity, ξ 7→ σ(x0, ξ) is homogeneous of degree 2 and
invertible for any ξ 6= 0 in Rd . Consider the discrete symbol

Zd 3 p 7→ σ(x0, p+ 1
2 ), with p = (p1, . . . , pd ), p+ 1

2 = (p1 + 1
2 , . . . , pd + 1

2 )

It is invertible for any p ∈ Zd . By discrete Fourier transform we deduce that

L̃x0 := σ(x0,−i∂y + 1
2 ) isomorphism H2(Td )→ L2(Td )

(trick borrowed from [KMR1997]), with T = R/2πZ.

Main steps of proof of Elliptic =⇒ Fredholm:
1 L̃x0 has the same principal part as Lx0 , the operator L frozen at x0, i.e. L̃pr

x0
= Lpr

x0
2 In a small enough ball B(x0, ρx0 ), the operators Lpr

x0
and Lpr are close in

L(H2,L2) norm.
3 There exists a perturbation L]

x0
of L̃x0 , still invertible, that has the same principal

part as L in B(x0, ρx0 ).
4 We make a finite covering of Ω by balls B(x0, ρx0 ), x0 ∈ F , finite subset of Ω

5 The collection of the inverses
(
L]

x0

)−1, x0 ∈ F , leads to the construction of a
parametrix E (pseudo-inverse) for L, i.e.

LE = I + K, K compact in L2(Ω) EL = I + K′, K′ compact in H2(Ω)
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Non-Elliptic =⇒ Non-Fredholm

Non-ellipticity means that there exist

x0 ∈ Ω, ξ0 ∈ Rd \ {0}, w0 ∈ CN \ {0}, σ(x0, ξ0) w0 = 0.

By homogeneity σ(x0, λξ0) = λ2σ(x0, ξ0), hence

∀λ ∈ R, σ(x0, λξ0) w0 = 0.

Define for n ≥ 1, with notation 〈ξ, x〉 = ξ1x1 + · · ·+ ξd xd :

un(x) = χ
(√

n |x − x0|
)

ein〈ξ0,x〉w0

for a cut-off function χ ∈ C∞0 (R), χ ≡ 1 in a neighborhood of 0. Note that

Lpr(x0,−i∂x )(ein〈ξ0,x〉w0) = 0, ∀n

and χ
(√

n |x − x0|
)

localizes around x0 at a slower scale than the frequency.
Then the sequence (un)n≥1 is a Weyl sequence for L:

‖Lun‖
L2(Ω)

+ ‖un‖
H1(Ω)

‖un‖
H2(Ω)

→ 0 as n→∞

contradicting a priori estimates that hold for a Fredholm operator.

Theorem 1 is proved. �
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Typical metamaterial example

Come back to our operator
P = − div A grad with A = a > 0 in Ωa ∪ ∂Ω and A = b < 0 in Ωb.

Our objective is to prove:

Theorem 2.1

Under hypotheses of slide 10, assume moreover that the interface Γ is C∞.
Then P is Fredholm H1(Ω)→ H1(Ω)′ if and only if

x 7→ a(x), x 7→ b(x), x 7→ a(x) + b(x) are never 0 on Γ

Here, when x ∈ Γ, a(x) = limy→x, y∈Ωa a(y) and b(x) = limy→x, y∈Ωb b(y)

Pick u ∈ H1(Ω) such that Pu = F with F (v) = (f , v) for f ∈ L2(Ω). Then
− div a grad u = f in Ωa

− div b grad u = f in Ωb

a ∂nu = 0 on ∂Ω

a ∂na u + b ∂nb u = 0 on Γ

with n, na, nb exterior unit normals to Ω, Ωa, Ωb, respectively.
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Symbols at the interface

Since a > 0 in Ωa and b < 0 in Ωb, P is elliptic in Ωa ∪ Ωb. We can say:

P is interior elliptic in Ω \ Γ.

In order to prove Th. 2.1, we explain how the condition

“ a, b, and a + b invertible on Γ ”

can be viewed as an interface ellipticity.

Interface ellipticity needs 3 symbols associated to each x0 in the interface Γ

For x0 ∈ Γ, we define the two limit interior symbols of P by (cf slide 11)

σI,a(x0, ξ) = a(x0)|ξ|2 and σI,b(x0, ξ) = b(x0)|ξ|2

a and b invertible means that the interior ellipticity holds up to the
interface, on both sides.

For x0 ∈ Γ, we need a new operator-valued symbol σT(x0) that takes into
account the transmission condition.
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Transmission symbols

Take Ω as an open set in Rd , d = 2, 3, . . ., split into two subdomains Ωa and
Ωb by a smooth interface Γ ⊂ Ω.

For x0 chosen in Γ define:
Local (tangential, normal) coordinates (x ′, t) ∈ Rd−1× R around x0 so that

t < 0 in Ωb ,
t = 0 in Γ,
t > 0 in Ωa,
the local map ψ : x → (x ′, t) satisfies Dψ(x0) = I.

The dual variable of x ′ as ξ′ ∈ Rd−1.

For ξ′ ∈ Rd−1, the transmission symbol σT(x0, ξ
′) is defined in variational form as:

σT(x0, ξ
′) : H1(R) −→ H−1(R)

u 7−→
(
v 3 H1(R) 7→ AT[x0, ξ

′](u, v)
)

with the form AT[x0, ξ
′] obtained by partial Fourier transform x ′ 7→ ξ′:

AT[x0, ξ
′](u, v) = b(x0)

∫ 0

−∞
(∂tu ∂tv + |ξ′|2uv) dt + a(x0)

∫ +∞

0
(∂tu ∂tv + |ξ′|2uv) dt
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Interface ellipticity

Ω ⊂ Rd with a smooth interface Γ ⊂ Ω.

Definition

We say that P is interface elliptic on Γ if (compare with slide 11)

(∗) ∀x ∈ Γ, ∀ξ ∈ Sd−1, σI,a(x , ξ), σI,b(x , ξ) are invertible,

and

(∗∗) ∀x ∈ Γ, ∀ξ′ ∈ Sd−2, σT(x , ξ′) is invertible.

Lemma

Assume (∗), i.e. a and b are invertible on Γ. Let x ∈ Γ and ξ′ ∈ Sd−2.
Then σT(x , ξ′) is Fredholm of index 0. Here is its kernel:

1 if a(x) + b(x) 6= 0, kerσT(x , ξ′) = {0}
2 if a(x) + b(x) = 0, kerσT(x , ξ′) is generated by function t 7→ w [x , ξ′](t)

w [x , ξ′](t) = e|ξ
′|t , t ≤ 0 and w [x , ξ′](t) = e−|ξ

′|t , t ≥ 0
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Proof of Lemma: The kernel

The Fredholm property is a consequence of ellipticity (∗) combined with a
compact perturbation argument. Symmetry gives the zero index.

Denote by ua, ub the restrictions to (0,∞) and (−∞, 0) of a function u.
An element u = (ua, ub) of kerσT(x , ξ′) satisfies

a(x) (−∂2
t + |ξ′|2)ua = 0 in (0,+∞)

b(x) (−∂2
t + |ξ′|2)ub = 0 in (−∞, 0)

− a(x) ∂tua + b(x) ∂tub = 0 at t = 0

We find

ua(t) = αe−|ξ
′|t + α′e|ξ

′|t and ub(t) = βe|ξ
′|t + β′e−|ξ

′|t

Since u ∈ H1(R):
ua and ub cannot be exponentially increasing, hence α′ = β′ = 0.
ua and ub have to coincide at t = 0, hence α = β.

The last equation gives

(a(x) + b(x))α|ξ′| = 0

This proves the lemma. �
18/41
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Elliptic =⇒ Fredholm

Theorem 2.2

Under hyp. of slide 10, assume moreover that the interface Γ is C∞. Then

P Fredholm H1(Ω)→ H1(Ω)′ ⇐⇒ P interface elliptic on Γ.

Proof of “Elliptic =⇒ Fredholm”
By construction of a parametrix E. As in the interior case, the essential
ingredient is the existence, for any x0 ∈ Ω, of an invertible operator L̃x0 that
has the same principal part at x0 as P.

If x0 ∈ Ωa ∪ Ωb, this is the interior case, slide 12.
If x0 ∈ ∂Ω, this is the standard Neumann bc case.
If x0 ∈ Γ, we set

L̃x0 := σT(x0,−i∂y′ + 1
2 )

Then, the invertibility of σT(x0, ξ
′) for all nonzero ξ′ ∈ Rd−1 yields that

L̃x0 invertible H1(Td−1 × R)→ H−1(Td−1 × R)
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Non-Elliptic =⇒ Non-Fredholm

Proof of “Non-Elliptic =⇒ Non-Fredholm”
By construction of Weyl sequences (aka quasimodes).
Pick χ ∈ C∞0 (− 1

2 ,
1
2 ) such that χ ≡ 1 on [− 1

4 ,
1
4 ].

There exists x0 such that either

σI,a(x0, ξ) or σI,b(x0, ξ) is not invertible. Say σI,a(x0, ξ). This means that
a(x0) = 0. Take ξ0 = (ξ′0, τ) ∈ Sd−1 and construct “sliding quasimodes”

un(x ′, t) = χ
(√

n |x ′ − x ′0|
)
χ(
√

n t − 1) ein〈ξ′0,x
′〉 einτ t .

there exists ξ′0 ∈ Sd−2 such that σT(x0, ξ
′
0) is not invertible. This means

that a(x0) + b(x0) = 0. Hence the existence of nonzero kernel elements
t 7→ w [x0, ξ

′](t). Take ξ′0 ∈ Sd−2 and construct “sitting quasimodes”

un(x ′, t) = χ
(√

n |x ′ − x ′0|
)
χ(
√

n|t |) ein〈ξ′0,x
′〉w [x0, ξ

′
0](t).

Notions of sliding and sitting quasimodes borrowed from

V. BONNAILLIE-NOËL, M. DAUGE, N. POPOFF
Ground state energy of the magnetic Laplacian on corner domains.
Mém. Soc. Math. Fr., No. 145. 2016.
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Conclusion for interface ellipticity

Then Theorem 2.2 is proved.
Combined with the Lemma slide 17, this proves Theorem 2.1.

Remark
The interface symbol σT(x , ξ′) can be defined in an alternative form.
Set PH2(R) the subspace of L2(R) functions u such that ua ∈ H2(R+) and
ub ∈ H2(R−), with ua and ub the restrictions of u to R+ and R−

σalt
T

(x , ξ′) : H1(R) ∩ PH2(R) −→ L2(R+)× L2(R−)× R
u 7−→ (fa, fb, g)

with 
a(x) (−∂2

t + |ξ′|2)ua = fa in R+

b(x) (−∂2
t + |ξ′|2)ub = fb in R−

−a(x) ∂tua + b(x) ∂tub = g at t = 0

We have the equivalence for each x ∈ Γ and ξ′ ∈ Rd−1

σT(x , ξ′) invertible ⇐⇒ σalt
T

(x , ξ′) invertible

Moreover P is Fredholm from H1(Ω)→ H1(Ω)′ if and only if P is Fredholm
from H1(Ω) ∩ PH2(Ω)→ L2(Ωa)× L2(Ωb)× H

1
2 (Γ).

21/41



Standard Model Polygonal Metamaterial Interior ellipticity Interface ellipticity Corner ellipticity Singularities Conclusions

Outline for current section

1 Elliptic corner problems: Standard Model

2 Polygonal Metamaterial

3 Interior ellipticity (or bulk ellipticity)

4 Interface ellipticity

5 Corner ellipticity

6 Regularity and singularities at corners

7 Conclusions

22/41



Standard Model Polygonal Metamaterial Interior ellipticity Interface ellipticity Corner ellipticity Singularities Conclusions

Corner ellipticity

Under hypotheses of slide 10, assume that the interface Γ is curvilinear
polygonal: This means that at each point x0 ∈ Γ = ∂Ωb, the domain Ωb is
locally smoothly diffeomorphic to a neighborhood of 0 in either

1 a half-plane R× R+ (x0 is a smooth transmission point)
2 a plane sector Kb[x0] (x0 is a corner – aka vertex)

Denote by C the set of corners. C is finite. We introduce the definition of
corner ellipticity.

Definition

We say that P is corner elliptic on C if (compare with slide 17)

(∗) ∀x ∈ C, ∀ξ ∈ S1, σI,a(x , ξ), σI,b(x , ξ) are invertible,

(∗∗) ∀x ∈ C, ∀ξ′ ∈ S0, σT,±(x , ξ′) is invertible,

(∗∗∗) ∀x ∈ C, σC(x) is invertible.

σT,± are the two interface symbols on the two sides of the sector
σC(x) defined on next slide.
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Corner symbol

Choose x0 in the corner set C.
Define local coordinates t around x0, with t = (t1, t2), so that:

t = 0 represents the corner x0

t ∈ Kb[x0] represents points in Ωb

t ∈ Ka[x0] represents points in Ωa, where Ka[x0] = R2 \ K b[x0]

The local map ψ : x → t satisfies Dψ(x0) = I.

For x0 chosen in C, the symbol σC(x0) is the frozen operator − div A(x0) grad
in variational form acting in the unit disk D2:

σC(x0) : H1
0 (D2) −→ H−1(D2)

u 7−→
(
v 3 H1(D2) 7→ AC[x0](u, v)

)
with

AC[x0](u, v) = a(x0)

∫
Da[x0]

∇tu · ∇tv dt + b(x0)

∫
Db [x0]

∇tu · ∇tv dt

with the finite sectors

Da[x0] = Ka[x0] ∩ D2 and Db[x0] = Kb[x0] ∩ D2
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Global ellipticity

Definition of (global) ellipticity

Assume that Γ is curvilinear polygonal. We say that P is elliptic if it is
1 interior elliptic in Ω \ Γ

2 interface elliptic on Γ \ C
3 corner elliptic on C

We already know that
1 a > 0 in Ωa & b < 0 in Ωb =⇒

P interior elliptic in Ω \ Γ

2 a > 0 in Ωa, b < 0 in Ωb, and a + b invertible on Γ \ C =⇒
P interface elliptic on Γ \ C

3 a > 0 in Ωa, b < 0 in Ωb, and a + b invertible on Γ =⇒
(∗) and (∗∗) of corner ellipticity on C
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Criterion for invertibility of corner symbol

For x0 ∈ C, let ωb(x0) be the opening of sector Kb[x0], well defined due to:

local map ψ : x → t satisfies Dψ(x0) = I

Then the opening of Ka[x0] is ωa[x0] = 2π − ωb[x0]. Set

ω[x0] = max{ωa[x0], ωb[x0]}

Theorem 3.1

Let x0 ∈ C. The corner symbol σC(x0) is invertible if and only if

(♦♦)
a(x0)

b(x0)
6∈
[

ω[x0]

ω[x0]− 2π
,
ω[x0]− 2π
ω[x0]

]

Remarks
If b(x0) 6= 0, the condition a(x0) + b(x0) 6= 0 is equivalent to a(x0)

b(x0)
6= −1.

We have ω[x0]
ω[x0]−2π < −1 and ω[x0]−2π

ω[x0]
> −1

Example of ωb = π
2 : Then ω = 3π

2 and the forbidden interval is[
−3,− 1

3

]
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(♦♦) =⇒ Invertibility of corner symbol

Based on the construction of an operator T inducing T-coercivity. A general
form proposed in [BoChCi2012] is

Tu =

{
ua in Ωa

−ub + 2Raua in Ωb
or Tu =

{
ua − 2Rbub in Ωa

−ub in Ωb

with Ra an extension operator from H1(Ωa) to H1(Ω), and similar for Rb.

Explicit formulas for Ra & Rb when Ωa & Ωb are finite sectors, e.g. for

Ωa = Da = {x , r < 1, θ ∈ (0, α)} and Ωb = Db = {x , r < 1, θ ∈ (α, 2π)}

are given in [BCC2012]: The extension Ra is defined as

Raua(r , θ) =

{
ua(r , θ) θ ∈ [0, α]

ua

(
r , α

2π−α (2π − θ)
)
, θ ∈ [α, 2π]

Then
‖∇Raua‖

L2(Db)
≤ max{ α

2π−α ,
2π−α
α
}‖∇ua‖

L2(Da)

from which we deduce that if (♦♦) holds then AC[x0](u,Tu) ≥ β|u|
2

H1(Ω)
.
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Non-(♦♦) =⇒ Non-Invertibility of corner symbol: Mellin transform

In the 2D situation, we have the corner symbols σ
C

(x0) (for each x0 ∈ C) in the
form of localized frozen operators.
In the 3D case, in presence of edges, we meet actual partial-Fourier symbols
including the dual variable ξ′′ of edge abscissa, defining suitable edge symbols.
In any case, to go further, we have to follow the path opened by [Kondrat’ev 1967]
and introduce the corner Mellin symbol M

C
[x0](λ) of σ

C
(x0). The distinctive

feature of such symbol is that it is based on Mellin transf. instead of Fourier transf.

Definition of Mellin transform

For x ∈ Rd , let r = |x | and θ = x
r ∈ Sd−1. Let u ∈ L2(Rd ) with support

supp u b Rd \ {0}. Denote ũ its representation in polar coordinates r , θ.

The Mellin transform Mu : C 3 λ 7→M[λ]u of u is defined for any λ ∈ C by

M[λ]u(θ) =

∫ +∞

0
r−λũ(r , θ)

dr
r

The function λ 7→M[λ]u is holomorphic on C with values in L2(Sd−1) and

(?) M[λ](∂θũ) = ∂θ
(
M[λ]u

)
and M[λ](r∂r u) = λM[λ]u
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Non-(♦♦) =⇒ Non-Invertibility of corner symbol: Mellin calculus

Pick x0 ∈ C and u, v ∈ C∞(D2 \ {0}. Recall that the corner symbol σC(x0) is
defined via the bilinear form

AC[x0](u, v) = a(x0)

∫
Ka[x0]

∇tu · ∇tv dt + b(x0)

∫
Kb [x0]

∇tu · ∇tv dt

In polar coordinates

AC[x0](u, v) = a(x0)

∫ ωa[x0]

0

∫ +∞

0

1
r 2

(
∂θũ ∂θ ṽ + (r∂r ũ) (r∂r ṽ)

)
rdrdθ

+ b(x0)

∫ 2π

ωa[x0]

∫ +∞

0

1
r 2

(
∂θũ ∂θ ṽ + (r∂r ũ) (r∂r ṽ)

)
rdrdθ

Relying on [integration by parts and] identities (?) we find the bilinear form
NC[x0, λ] of the Mellin symbol MC[x0](λ) : H1(T) −→ H−1(T) of σC(x0):

For ϕ,ψ ∈ H1(T),

NC[x0, λ](ϕ,ψ) = a(x0)

∫ ωa[x0]

0
(∂θϕ∂θψ − λ2ϕψ) dθ

+ b(x0)

∫ 2π

ωa[x0]

(∂θϕ∂θψ − λ2ϕψ) dθ
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Non-(♦♦) =⇒ Non-Invertibility of corner symbol: Mellin symbol

In strong form the corner Mellin symbol M
C

[x0](λ) is (with ωa[x0] abbreviated into ω)

M
C

(λ) : H1(T) ∩ PH2((0, ω), (ω, 2π)
)
−→ L2(0, ω)× L2(ω, 2π)× C2

ϕ 7−→ (fa, fb, g0, g1)

with 
a(x0) (−∂2

θ − λ
2)ϕa = fa in (0, ω)

b(x0) (−∂2
θ − λ

2)ϕb = fb in (ω, 2π)

−a(x0) ∂θϕa + b(x0) ∂θϕb = g0 at θ = 0
−a(x0) ∂θϕa + b(x0) ∂θϕb = g1 at θ = ω

Ellipticity at the lower level (interior and interface, i.e. (∗) and (∗∗) of corner ellipticity)
implies that the symbol λ 7→M

C
[x0](λ) has a meromorphic inverse.

The poles of the inverse are the λ such that ker M
C

[x0](λ) 6= {0}: Calculate

ϕa = αeiλθ + α′e−iλθ and ϕb = βeiλθ + β′e−iλθ

The 2 compatibility and 2 transmission conditions yield the 4× 4 system for (α, α′, β, β′)>:
α+ α′ = βe2iπλ + β′e−2iπλ

αeiωλ + α′e−iωλ = βeiωλ + β′e−iωλ

a(x0) (α− α′) = b(x0) (βe2iπλ − β′e−2iπλ)

a(x0) (αeiωλ − α′e−iωλ) = b(x0) (βeiωλ − β′e−iωλ)
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Non-(♦♦) =⇒ Non-Invertibility of corner symbol: Mellin spectrum

Set µ = a(x0)
b(x0)

. Then MC[x0](λ) has a non-trivial kernel iff∣∣∣∣∣∣∣∣
1 1 −e2iπλ −e−2iπλ

eiωλ e−iωλ −eiωλ −e−iωλ

µ −µ −e2iπλ e−2iπλ

µeiωλ −µe−iωλ −eiωλ e−iωλ

∣∣∣∣∣∣∣∣ = 0

i.e. iff

(♠) (µ+ 1) sinλπ = ±(µ− 1) sinλ(π − ω)

M. COSTABEL, E. STEPHAN

A direct boundary integral equation method for transmission problems,
J. Math. Anal. Appl. 106 (1985) no. 2, 367-413.

A.-S. BONNET-BEN DHIA, M. DAUGE, K. RAMDANI

Analyse spectrale et singularités d’un problème de transmission non coercif,
C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) no. 8, 717-720.

When, a(x0), b(x0) and a(x0) + b(x0) are nonzero, λ 7→MC[x0](λ) has a
meromorphic inverse, with poles located at the set ΣC[x0] of roots of eq. (♠).

ΣC[x0] is the spectrum of MC[x0].
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Non-(♦♦) =⇒ Non-Invert. of edge symbol: Threshold singularities

Recall —with ω = max{ωa, 2π − ωa} and µ = a(x0)
b(x0)

,

(♠) (µ+ 1) sinλπ = ±(µ− 1) sinλ(π − ω)

The roots of (♠) are either real or pure imaginary. Pure imaginary roots λ = iκ
with κ ∈ R \ {0} are present iff µ ∈

(
ω

ω−2π ,
ω−2π
ω

)
, i.e. when1 (♦♦) is not true.

Let χ ∈ C∞0 (D2) be a smooth cutoff function, χ ≡ 1 in a neighborhood of 0.

Lemma

Let λ = iκ with κ ∈ R \ {0} be a root of (♠). There exists nonzero θ 7→ ϕκ(θ)
in ker M[x0](λ), giving rise to the “threshold singularity”

U(r , θ) = r iκϕκ(θ),
i.e. satisfying

the function χU does not belong to H1
0 (D2),

σC(x0)(χU) ∈ H−1(D2),

for any n ∈ N, r
1
n χU belongs to H1

0 (D2).

Then the sequence
(
r

1
n χU

)
n≥1 is a Weyl sequence for σC(x0).

1When µ belongs to one of the boundaries of the forbidden interval, there is no pure imaginary
root, but an anomalous pole in 0. 31/41
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Conclusion for curvilinear polygonal interfaces

Recall that
Ω = Ωa ∪ Ωb, Ωa ∩ Ωb = ∅ and Ωb b Ω

and

P = − div A grad with A = a > 0 in Ωa ∪ ∂Ω, A = b < 0 in Ωb

with smooth functions a and b.

We have (almost) proved:

Theorem 3.2

Assume that Γ is curvilinear polygonal. Then the following statements are
equivalent:

1 P is Fredholm from H1(Ω) into H1(Ω)′

2 P is elliptic in the sense of slide 24
3 The functions a and b satisfy

∀x0 ∈ Γ, a(x0), b(x0) and a(x0) + b(x0) are nonzero.
∀x0 ∈ C, a(x0)

b(x0)
6∈
[

ω[x0]
ω[x0]−2π ,

ω[x0]−2π
ω[x0]

]
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Outline for current section
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Regularity shift

Recall
Γ is a polygonal interface (2D case)
C is the set of corners x0
For each x0 ∈ C, the spectrum of the corner symbol σ

C
(x0) is Σ

C
[x0]

Theorem 4.1

Assume that P is interior and interface elliptic (up to corners), and

(♥) ∀x0 ∈ C, ΣC[x0] is disjoint from the strip {λ ∈ C, Reλ ∈ (0, 1]}

Let u ∈ H1(Ω) be such that Pu ∈ L2(Ω). Then ua ∈ H2(Ωa) and ub ∈ H2(Ωb).

Remarks
The condition Pu = f ∈ L2(Ω) means

− div a grad u = f in Ωa

− div b grad u = f in Ωb
a ∂nu = 0 on ∂Ω

a ∂na u + b ∂nb u = 0 on Γ

The elliptic regularity shift L2 → PH2 is valid outside corners, i.e. in a
neighborhood of any point x0 ∈ Ω \ C.
Condition (♥) holds e.g. if ω = π

2 and µ ∈ (−3,− 1
3 ) (the forbidden interval for

Fredholmness H1 → H−1 !) 33/41
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Expansion

Theorem 4.2

Let P be interior and interface elliptic (up to corners). Assume, instead of (♥)

(♥[) ∀x0 ∈ C, ΣC[x0] is disjoint from the line Reλ = 1.

Let u ∈ H1(Ω) be such that Pu ∈ L2(Ω). Then u has an expansion around
each corner x0 according to

u = ureg +
∑

x0 ∈ C

∑
λ ∈ Σ

C
[x0]

0 < Reλ < 1

χx0
|x − x0|λϕx0,λ

where

the smooth cut-off χx0
localizes around x0

the term ϕx0,λ is a function of the angle θx0 = x−x0
|x−x0|

∈ T and belongs to
ker MC[x0](λ)

ureg belongs to PH2(Ω).

Remarks
Theorem 4.2 implies Theorem 4.1.
The cardinal of the set Σ

C
[x0] ∩ {Reλ ∈ (0, 1)} is finite, due to ellipticity.

ker M
C

[x0](λ) is finite dimensional, due to ellipticity. 34/41
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Elements of proof: 0 – 2

0 Simplification.
For ease of exposition, we assume that in a neighborhood of each corner,
coefficients a and b are constant and the sides of the interface Γ are straight.

1 Localization.
Using the local regularity away from the corners, we can use smooth cut-offs
to isolate corners from each other. By mere translation and rotation, the
localized at x0 of the operator P coincides with its corner symbol σC(x0):
Our assumption becomes

u ∈ H1
0 (D2), σC(x0)(u) = f ∈ L2(D2)

with u ≡ 0 in a neighborhood of ∂D2, so that we have

u ∈ H1(R2), supp u b D2, σC(x0)(u) = f ∈ L2(R2)

2 Polar coordinates. In polar coordinates and strong form
−a
(
∂2
θ + (r∂r )

2)ũa = r 2 f̃ in Ka

−b
(
∂2
θ + (r∂r )

2)ũb = r 2 f̃ in Kb

−a ∂θũ + b ∂θũ = 0 if θ = 0 or θ = ω
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Elements of proof: 3 – 4

3 Mellin transform.
As u and f are in L2 and have compact support their Mellin transforms are
well defined for Reλ ≤ −1. Set

U(λ) = M[λ](u) and G(λ) = M[λ](r 2f )

Then σC(u) = f becomes

MC(λ) U(λ) = G(λ), Reλ ≤ −1.

In fact, due to relations between Mellin and Fourier-Laplace transforms via
the change of variable R+ 3 r → τ = log r ∈ R:

G(λ) is defined for λ ≤ 1 and holomorphic for Reλ < 1 with values in L2(T)

U(λ) is defined and holomorphic for λ < 0 with values in H1(T) (Hardy’s inequality)

4 Meromorphic extension.
We define a meromorphic extension U] of U to the strip Reλ ∈ [0, 1] by

U](λ) = MC(λ)−1G(λ).

We have
U] is meromorphic with values in PH2((0, ω), (ω, 2π))

Possible poles of U] belong to the spectrum Σ
C

of M
C

and to the strip Reλ ∈ [0, 1].
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Elements of proof: 5

5 Inverse Mellin transform.
The function R 3 κ 7→ G(η + iκ) ∈ L2(T) belongs to L2(R) for all η ≤ 1.

On line Reλ = 1 (disjoint from the spectrum ΣC), the resolvent MC(λ)−1

satisfies weighted estimates (due to interior and interface ellipticity), that imply

(R) |λ|2 ‖U](λ)‖
L2(T)

+ |λ| ‖U](λ)‖
H1(T)

+ ‖U](λ)‖
PH2(T)

≤ C‖G(λ)‖
L2(T)

with a constant C independent of λ, for Reλ = 1.

The inverse Mellin formula

u1(x) =
1

2iπ

∫
Reλ=1

rλU](λ)(θ) dλ

defines a function u1 that satisfies

r−2u1 ∈ L2(R2), r−1∇u1 ∈ L2(R2)

and, for its second order derivatives

∂αu1
∣∣
Ka
∈ L2(Ka), and ∂αu1

∣∣
Kb
∈ L2(Kb), |α| = 2.
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Elements of proof: 6

6 Residue formula.
We have

u1 =
1

2iπ

∫
Reλ=1

rλU](λ) dλ

and, for any ε > 0

u =
1

2iπ

∫
Reλ=−ε

rλU](λ) dλ

The difference is given by the residue formula

u1 − u =
1

2iπ

∫
γ

rλU](λ) dλ

where γ is any simple contour surrounding the poles of U](λ) within the strip
Reλ ∈ [0, 1] (uses resolvent estimates (R)). Thus

u1 − u =
∑

λ0 ∈ Σ
C

0 ≤ Reλ0 < 1

Res
λ=λ0

rλU](λ)
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Elements of proof: End of proof

In order to finally prove our Theorem 4.2, it remains to

Set ureg =
∑

x0∈C
χx0

u1,x0

Notice that the residues Resλ=λ0 rλU](λ) correspond to the poles of
MC(λ)−1. For λ0 6= 0, these poles are simple, thus are given by a
projection Π[λ0] on the kernel of MC(λ0):

Res
λ=λ0

rλU](λ) = Res
λ=λ0

rλMC(λ)−1G(λ)

= rλ0

(
Res
λ=λ0

MC(λ)−1
)

G(λ0)

= rλ0 Π[x0] G(λ0)

For λ0 = 0, since we already know that u ∈ H1, the only possible
contribution is a constant.

We deduce formula (♥[).

More details in https://hal.archives-ouvertes.fr/cel-01399350

especially in sect. 5 (for Dirichlet boundary condition at a corner).
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Related spectral problems

1 Choose a and b such that P is elliptic, and look for the [semi-classical] discrete
spectrum

−[h2] div A grad u = Λu, [h→ 0]
The numerical approximation of this spectrum is addressed in

C. CARVALHO, L. CHESNEL, P. CIARLET JR

Eigenvalue problems with sign-changing coefficients.
C. R. Math. Acad. Sci. Paris 355 (2017) no. 6, 671-675.

A.-S. BONNET-BEN DHIA, C. CARVALHO, P. CIARLET JR

Mesh requirements [...] with sign-changing coefficients.
Numer. Math. 138 (2018) no. 4, 801-838.

2 Set a ≡ 1 and consider b =: Λ as a spectral parameter: We can define the
“opertor pencil” P : C 3 Λ 7→ P(Λ) as

P(Λ) = − div1Ωa grad u − Λ div1Ωb grad u : H1(Ω)/C→ (H1(Ω)/C)′

with 1 denoting the characteristic function. The essential spectrum is the set of
Λ’s for which P(Λ) is not Fredholm, c.f. Th.2.1 and 3.2. When Λ 6∈ R−, P(Λ) is
invertible. We expect that the rest of the spectrum is formed by eigenvalues, as in
the smooth, unbounded case considered in

D. GRIESER

The plasmonic eigenvalue problem.
Rev. Math. Phys. 26 (2014) no. 3.
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Final conclusion

S Strength
Laplace-based example: The resolvent is more explicit.
Dimension 2: The T-coercivity is optimal.

W Weakness
Lack of coercivity. Unbounded operators in both directions.

O Opportunities
Possible generalization to 3D configurations, with a polyhedral interface.

T Threats
Too many possible generalizations...
Too many possible directions of investigation...
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